Выбор процессора для компьютера. Основные производители процессоров для пк Кто производит процессоры

Ни для кого не секрет, что производственные фабрики компании Intel на данный момент являются одними из ведущих фабрик в мире по уровню технической оснащенности. Чем они отличаются от суровых Челябинских труболитейных заводов? А давайте посмотрим.

3 x Easter eggs

Эта статья может быть в первую очередь полезна тем, кто хочет построить свою фабрику для производства процессоров – если подобная мысль у вас хоть раз возникала, то смело заносите статью в закладки;) Для того, чтобы понять, о каких масштабах идет речь, я советую ознакомиться с предыдущей статьей под названием «Трудности производства процессоров ». Важны понимать масштабы не столько самой фабрики (хотя и их тоже), сколько самого производства – некоторые «детальки» современных процессоров делаются буквально на атомарном уровне. Соответственно и подход здесь особый.

Понятное дело, что без заводов в производстве не обойтись. На данный момент у компании Intel есть 4 завода, способных массово производить процессоры по технологии 32нм: D1D и D1C в штате Орегон, Fab 32 в штате Аризона и Fab 11X в Нью-Мексико.

Устройство завода

Высота каждой фабрики Intel по производству процессоров на 300-мм кремниевых пластинах составляет 21 метр, а площадь достигает 100 тысяч квадратных метров. В здании завода можно выделить 4 основных уровня:

Уровень системы вентиляции
Микропроцессор состоит из миллионов транзисторов – самая маленькая пылинка, оказавшаяся на кремниевой пластине, способна уничтожить тысячи транзисторов. Поэтому важнейшим условием производства микропроцессоров является стерильная чистота помещений. Уровень системы вентиляции расположен на верхнем этаже - здесь находятся специальные системы, которые осуществляют 100% очистку воздуха, контролируют температуру и влажность в производственных помещениях. Так называемые «Чистые комнаты» делятся на классы (в зависимости от количества пылинок на единицу объема) и самая-самая (класс 1) примерно в 1000 раз чище хирургической операционной. Для устранения вибраций чистые комнаты располагаются на собственном виброзащитном фундаменте.

Уровень «чистых комнат»
Этаж занимает площадь нескольких футбольных полей – именно здесь изготавливают микропроцессоры. Специальная автоматизированная система осуществляет перемещение пластин от одной производственной станции к другой. Очищенный воздух подается через систему вентиляции, расположенную в потолке, и удаляется через специальные отверстия, расположенные в полу.
Помимо повышенных требований к стерильности помещений, «чистым» должен быть и работающий там персонал - только на этом уровне специалисты работают в стерильных костюмах, которые защищают (благодаря встроенной системе фильтрации, работающей от батареи) кремниевые пластины от микрочастиц текстильной пыли, волос и частиц кожи. Такой костюм называется «Bunny suit» - чтобы надеть его в первый раз, может потребоваться от 30 до 40 минут. Специалистам компании для этого требуется порядка 5 минут.

Нижний уровень
Предназначен для систем поддерживающих работу фабрики (насосы, трансформаторы, силовые шкафы и т.п.). Большие трубы (каналы) передают различные технические газы, жидкости и отработанный воздух. Спецодежда сотрудников данного уровня включает каску, защитные очки, перчатки и специальную обувь.

Инженерный уровень
По назначению является продолжением нижнего уровня. Здесь находятся электрические щиты для энергоснабжения производства, система трубопроводов и воздуховодов, а так же кондиционеры и компрессоры.

Пыль - мелкие твёрдые тела органического или минерального происхождения. Пыль - это частички среднего диаметра 0,005 мм и максимального - 0,1 мм. Более крупные частицы переводят материал в разряд песка, который имеет размеры от 0,1 до 1 мм. Под действием влаги пыль обычно превращается в грязь.

Интересные факты
В плотно запертой с закрытыми окнами квартире за две недели оседает порядка 12 тысяч пылевых частиц на 1 квадратный сантиметр пола и горизонтальной поверхности мебели. В этой пыли содержится 35 % минеральных частиц, 12 % текстильных и бумажных волокон, 19 % чешуек кожи, 7 % цветочной пыльцы, 3 % частиц сажи и дыма. Оставшиеся 24 % неустановленного происхождения.
Подсчитано, что один гектар газона связывает 60 тонн пыли.

Для постройки фабрики такого уровня требуется около 3 лет и порядка $5млрд – именно эту сумму должен будет «отбить» завод в последующие 4 года (к тому времени как появятся новые технологический процесс и архитектура; необходимая для этого производительность – порядка 100 рабочих кремниевых пластин в час). Если после этих цифр ни одна мышца на вашем лице не дрогнула, то вот вам (уже для внесения в смету) еще немного приблизительной статистики. Для постройки завода требуется:
- более 19 000 тонн стали
- более 112 000 кубических метров бетона
- более 900 километров кабеля

Наглядный процесс строительства одной из фабрик компании (заливал в HD):

Intel Copy Exactly

У большинства производителей полупроводниковой электроники оборудование и процессы, используемые в лабораториях для исследований и разработок, отличаются от того, что применяется на заводах по производству самой продукции. В связи с этим возникает проблема – при переходе с опытного производства на серийное, часто возникают непредвиденные ситуации и прочие задержки, возникающие из-за необходимости дорабатывать и адаптировать технологические процессы – в общем, делать всё для достижения наивысшего процента выхода годной продукции. Помимо задержки серийного производства это может привести и к другим осложнениям – да хотя бы к изменениям в значениях параметров техпроцесса. Соответственно, результат может получиться непредсказуемым.
У компании Intel в такой ситуации свой подход, который называется Copy Exactly . Суть данной технологии – в полном копировании лабораторных условий на строящиеся фабрики. Повторяется все до мелочей - не только само здание (конструкция, оборудование и настройки, трубопроводная система, чистые комнаты и покраска стен), но и входные/выходные параметры процессов (которых более 500!), поставщики исходных материалов и даже методики обучения персонала. Все это позволяет работать фабрикам в полную силу практически сразу после запуска, но и это не главный плюс. Благодаря такому подходу фабрики имеют большую гибкость – в случае аварии или реорганизации, начатые на одном заводе пластины смогут быть сразу «продолжены» на другом, без особого ущерба для бизнеса. Подобный подход по достоинству оценили конкурирующие компании, но почему-то практически никто его больше не применяет.

Как я уже говорил, в зале вычислительной техники Московского Политехнического музея компания Intel открыла свою экспозицию, одну из самых крупных в зале. Стенд получил название «От песка до процессора » и представляет собой достаточно познавательную конструкцию.

Во главе зала стоит «Chipman» в точной копии костюма, которые применяются на заводах корпорации. Рядом – макет одной из фабрик; неподалеку стоит стенд, внутри которого находятся «процессоры на разных этапах» - куски оксида кремния, кремниевые пластины, сами процессоры и т.д. Все это снабжено большим количество информации и подкреплено интерактивным стендом, на котором любой желающий может рассмотреть устройство процессора (передвигая ползунок масштаба – вплоть до молекулярного строения). Чтобы не быть голословным, вот пара фотографий экспозиции:

В понедельник будет статья про само производство процессоров. А пока снова откиньтесь на спинку стула и посмотрите (желательно в HD) этот видеоролик:

09.07.2018, Пн, 13:52, Мск , Текст: Дмитрий Степанов

Китайская компания Hygon начала производство x86-совместимых серверных процессоров Dhyana на базе архитектуры AMD Zen, за лицензирование технологии производства которых заплатила $293 миллиона. Развертывание производства собственных чипов призвано составить конкуренцию решениям триумвирата Intel, VIA и AMD на внутреннем рынке Китая, а также помочь в повышении уровня независимости от импорта, что особенно важно в условиях разгоревшейся торговой войны с США.

Новый процессор для внутреннего рынка

Hygon, китайский производитель полупроводниковых изделий, начал серийное производство серверных x86-совместимых процессоров на микроархитектуре AMD Zen под брендом Dhyana. Таким образом, Hygon стал четвертым в мире игроком на рынке x86-микросхем, в перспективе способным составить конкуренцию Intel, VIA и AMD. Микросхемы разработаны компанией Chendgdu Haiguang IC Design Co., совместным предприятием Hygon и AMD.

О создании совместной компании было объявлено в мае 2018 г. По оценке Forbes, стоимость сделки по приобретению прав на использование технологий AMD составила $293 млн. Также в соответствии с условиями сделки AMD будет получать регулярные денежные отчисления, так называемые роялти, по истечении срока действия лицензии на использование интеллектуальной собственности компании. Кроме того, соглашение не запрещает AMD продвигать собственные x86-совместимые процессоры на территории Китая.

Как утверждает AMD, компания не предоставляет китайским партнерам окончательного дизайна микросхем. Вместо этого она позволяет им использовать собственные наработки для проектирования чипов, нацеленных исключительно на внутренний китайский рынок. Тем не менее, новые процессоры, судя по всему, обладают минимальными отличиями от линейки серверных микросхем AMD Epyc первого поколения – для обеспечения поддержки Dhyana ядром Linux разработчикам пришлось добавить лишь новые идентификаторы вендоров и номера серий. Размер патча для Linux, отправленного Hygon, не превышает 200 строк.

x86-процессор Dhyana практически ничем не отличается от оригинального AMD Epyc

Также стоит отметить, что новые микросхемы, в отличие от оригинальных AMD Epyc, поставляющихся в виде отдельной микросхемы для установки в разъем на материнской плате, принадлежат к классу SoC-решений (System on Chip – система на кристалле), то есть распаиваются непосредственно на материнской плате.

Китай продолжает инвестировать в x86-совместимые чипы

Информация о новых чипах возникла на фоне набирающей в последнее время обороты торговой войны между США и Китаем. Подобное развитие событий, вероятно, способствует укреплению в головах руководителей КНР давней уверенности в том, что налаживание собственного производства x86-совместимых микропроцессоров является стратегически важной задачей для государства.

Напомним, что в 2015 г. администрация Барака Обамы (Barack Obama), действующего на тот момент президента США, запретила экспорт серверных процессоров Intel Xeon из-за опасений по поводу того, что поставка чипов может существенно упростить реализацию китайской ядерной программы.

В данной ситуации достижение договоренностей с AMD пришлось как нельзя кстати. Сделка, по-видимому, выгодна и безопасна для обеих сторон. Сложная структура совместной компании позволяет AMD лицензировать собственные технологии, не нарушая законов и запретов, при этом гарантируя себе прибыль как в краткосрочной, так и в среднесрочной перспективе, без осуществления каких-либо существенных капиталовложений. Китайская же сторона получает возможность усилить собственную независимость от импорта и дать бой конкурентам в лице Intel и VIA, занимающим доминирующее положение на рынке x86-микросхем.

Hygon не единственный китайский производитель микроэлектроники, инвестирующий в импортозамещение в области x86-совместимых микросхем. Например, компания Zhaoxin Semiconductor в партнерстве с VIA также занимается производством продукции данного вида.

В начале 2018 г. Zhaoxin Semiconductor анонсировала линейку новых x86-совместимых микропроцессоров Kaixian KX-5000 на архитектуре WuDaoKou, выполненных в соответствии с 28-нанометровым технологическим процессом. Производительность восьмиядерной новинки позволила продемонстрировать достойный результат на уровне Intel Atom C2750 в синтетических тестах.

Сердцем компьютера называют процессор (processor), являющийся его основным обрабатывающим данные устройством. Деталь имеет вид набора микросхем и отвечает за вычислительные процессы. Как выбрать процессор для компьютера – важнейший вопрос при покупке техники. От производительности данной детали во многом зависит общая скорость работы системы. Чтобы не сожалеть о своем приобретении, выбирайте комплектующие с учетом их характеристик.

Основные характеристики процессора

  1. Производитель. Выделяют двух основных конкурентов, выпускающих процессоры для компьютеров – это AMD и Intel. Вторая фирма считается лидером, разрабатывающим сверхсовременные технологии. Главное преимущество компании АМД перед Интел – относительно низкие цены. Причем продукция первой уступает второй в производительности незначительно (в среднем, на 10%), но стоимость имеет ниже в 1,5-2 раза.
  2. Что такое тактовая частота процессора? Этот параметр определяет, сколько операций способно выполнить устройство за секунду. На что влияет частота процессора: высокий показатель данной характеристики обещает быструю обработку данных компьютером. Параметр считается одним из важнейших при выборе устройства. Как узнать частоту в ОС Windows: необходимо вызвать правой клавишей мыши меню свойств на значке «Мой компьютер».
  3. Количество ядер. Этот показатель влияет на число программ, которые возможно запустить на ПК без потери его производительности. Устаревшие модели компьютеров оснащены четырехъядерными или двухъядерными процессорами. Новые устройства, выпущенные в течение последних лет, имеют 6- и 8-ядерные детали. Однако если программное обеспечение оптимизировано под двухъядерный ПК, большее число ядер не ускорит его работу. На коробке детали можно увидеть буквенно-числовую маркировку, расшифровка которой предоставит данные о количестве ядер.
  4. Частота системной шины. Характеристика говорит о скорости потоков входящей или исходящей информации. Чем выше показатель, тем быстрее осуществляется обмен информацией.
  5. Кэш-память. Большую роль в работе ПК играет кэш процессора, который имеет вид высокоскоростного блока памяти. Деталь располагается непосредственно на ядре и необходима для повышения производительности. Благодаря ей обработка данных происходит быстрее, чем в случае с оперативной памятью. Есть 3 уровня кэш-памяти – от L1 до L3. Первые два имеют небольшие объемы, но уверенно выигрывают третьи, предусматривающие большую вместительность – за счет скорости работы.
  6. Тип разъема (сокет). Данная характеристика не считается первостепенной, однако имеет определенную актуальность при выборе устройства. Сокет – это «гнездо» в материнской плате, в которое помещается процессор, поэтому оно должно быть совместимо с выбранной деталью. К примеру, если сокет имеет маркировку АМЗ, необходим соответствующий разъем на материнской плате. Последние модели оснащены современными типами «гнезд» и зачастую имеют улучшенные характеристики (частота шин и другие).
  7. Энергопотребление и охлаждение. Мощные современные устройства оказывают негативное влияние на энергопотребление компьютера. Чтобы избежать перегрева деталей и их поломки, используют специальные вентиляторы (кулеры). Для используют показатель TDP, указывающий на количество тепла, необходимого в отводе. На основе этой величины подбирается определенная модель системы охлаждения.

Чем отличаются AMD от Intel

Часто задаваемым вопросом среди желающих приобрести процессор является: «Что лучше АМД или Интел?». Главным отличием является технология гиперпрочности и увеличенный вычислительный конвейер, которыми обладают модели Intel. Благодаря этому устройства быстрее выполняют ряд задач: архивируют файлы, проводят кодировку видео, выполняют прочие задачи. Детали от AMD не хуже справляются с перечисленными заданиями, но тратят на это больше времени. Каждый определяет сам: какой процессор лучше Интел или АМД.

Чтобы упростить выбор, ознакомьтесь с достоинствами продукции обоих производителей. Сравнение процессоров AMD и Intel:

Преимущества Интел

Преимущества АМД

Высокая скорость работы ПК

Оптимальное соотношение цены и качества

Экономичное энергопотребление

Стабильность работы системы

Высокая производительность в играх

Многозадачность

Многопоточность Core i7 и i3 дает дополнительную производительность

Возможность ускорить работу процессов на 5-20%

Прекрасно настроенная работа с оперативной памятью

Мультиплатформенность (возможность собрать ПК из деталей разных поколений фирмы АМД)

Какой процессор выбрать для компьютера

Ответ на поставленный вопрос зависит от тех задач, которые должен будет выполнять ПК. Так, при выборе игрового компьютера внимание стоит уделить модели видеокарты, поскольку графический адаптер несет ответственность за поддержку определенных технологий и уровня производительности в играх. Однако без правильно подобранного центрального процессора видеокарта не раскроет своего потенциала. Для работы с другими программами или использования ПК в офисе подходят менее требовательные детали.

Для игр

Как выбрать процессор для игрового компьютера? К «геймерскому» ПК предъявляется ряд требований. Устройство должно уметь обрабатывать как минимум четыре потока данных. Результаты тестов доказали, что технология Intel Hyper-Treading увеличивает число кадров в секунду. Специалисты считают оптимальными для игрового ПК модели Интел Core i5. Детали от АМД показывают меньшую производительность. Если в линейке от Интел со своими задачами справляются 4-ядерные устройства, то их конкуренты показывают такой же результат с 8-ядерными аналогами. Какой процессор выбрать для игр?

Топ устройств для игр:

  1. Intel Core-i5 Ivy Bridge (четырехъядерный);
  2. Intel Core i5-4440 Haswell (четырехъядерный);
  3. AMD FX-8350 Vishera (восьмиядерный).

Для использования дома или в офисе

Браузеры и другие необходимые для офисной работы программы нуждаются во внушительном объеме оперативной памяти, но практически не нагружают жесткий диск и процессор. Поэтому выбирать лучше компьютер с большим объемом памяти. Однако производительностью процессора тоже пренебрегать не стоит. Согласно результатам тестирования, удачным решением станут модели из линеек Intel Core i3 или i5.

Список бюджетных устройств для офиса:

  • Intel Celeron G1820;
  • AMD ATHLON II X2 255;
  • AMD ATHLON II X4 750K;
  • AMD A8-6600K.

Для работы с требовательными программами

К данной категории относятся детали, функция которых – обеспечивать быструю работу требовательных программ, к примеру, видео-, графических редакторов и др. Устройства такого типа относятся к дорогим комплектующим и отличаются максимальным быстродействием. Эта категория процессоров часто интересует геймеров, которые хотят добиться лучшего качества изображения во время игры.

Обзор лучших устройств для требовательных программ:

  • AMD FX-8350 (8-ядерный). Идеально подходит для игр и других программ, рассчитанных на . Отличается быстродействием и оправданной ценой.
  • Интел i7-4770 (4-ядерный). Запускает игры на максимально высоких настройках, работает быстро, идеально оптимизирован для видеокарт от Интел.

Рейтинг лучших процессоров для ПК 2019 года

  1. Intel Core i7-990x. Идеален для игрового ПК последнего поколения. Устройство предназначено для разъема 1366, оснащено 6 ядрами, имеет частоту в 3,46 гГц и 12 мегабайтами кэш-памяти. Примерная стоимость: 38 000 р.
  2. Intel Core i7-3970X Extreme Edition. Одна из самых популярных моделей. Оснащена 6 ядрами, имеет 15 Мб кэш-памяти и 3,5 гГц тактовой частоты. Отлично работает с любыми новыми требовательными играми и программами. Примерная стоимость: 46 000 р.
  3. Intel Core i5-4690K. Недорогая модель покажет прекрасные результаты в плане быстродействия. Если сравнить i5-4690K с другими устройствами, оно выгодно выделяется благодаря соотношению цены/качества. Процессор оснащен кэш-памятью третьего уровня, имеет 3,5 гГц тактовой частоты и 4 ядра. Примерная стоимость: 22 000 р.
  4. AMD FX-9370. Самый мощный процессор AMD имеет новый сокет АМ3+ и 8 ядер, развивающих максимальную частоту до 4,4 гГц. Модель оборудована 8 Мб кэш-памяти, что позволяет улучшить работу ПК и использовать любые программы, игры. Примерная стоимость: 20-22 000 р.
  5. Intel Xeon E3-1230 v3. Четырехъядерное устройство относится к четвертому поколению процессоров от Интел. Оно оснащено сокетом типа 1150, который считается лучшим среди существующих. Тактовая частота Xeon E3-1230 v3 – 3,3гГц, объем памяти кэш равен 8 Мб. Примерная стоимость: 22 000 р.

Таблица тестов процессоров 2015 года

Чтобы понять, как выбрать процессор для компьютера, следует ознакомиться с результатами их тестирования. Устройства проходят испытания на базе ОС Windows 7 (64-bit). Для этого подбираются определенные программы, чтобы раскрыть потенциал многопоточности, определить, есть ли поддержка технологий AMD Turbo CORE (динамического разгона) и Intel Turbo Boost Technology, возможно ли использовать новые SIMD. Результаты испытания выражаются в процентах от производительности самого быстрого среди существующих устройств, имеющего 100% результат.

Сводная таблица производительности процессоров:

Название

Результат

Intel Core i7-5930K BOX

Intel Core i7-4960X Extreme

Intel Core i7-4960X Extreme BOX

Intel Core i7-5820K BOX

Intel Core i7-4790K

Intel Core i7-4790K BOX

Intel Core i7-4790

Intel Core i7-4790 BOX

Intel Core i7-4820K BOX

Intel Xeon E3-1240 V2

Intel Xeon E3-1230 V2

При желании приобрести процессор вам стоит изучить его характеристики. К примеру, в погоне за частотой, многие забывают об особенностях ядра конкретного изготовителя, что негативно влияет на производительность компьютера. Чтобы остаться удовлетворенным покупкой, необходимо учесть параметры устройства и его совместимость с другими деталями. Узнайте, как выбрать подходящий процессор для компьютера, посмотрев предложенное видео.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Корни нашего цифрового образа жизни определённо растут из полупроводников, которые позволили создавать сложные вычислительные чипы на основе транзисторов. Они хранят и обрабатывают данные, что и является основой современных микропроцессоров. Полупроводники, которые сегодня изготавливаются из песка, являются ключевым компонентом практически любого электронного устройства, от компьютеров до ноутбуков и сотовых телефонов. Даже машины теперь не обходятся без полупроводников и электроники, поскольку полупроводники управляют системой кондиционирования воздуха, процессом впрыска топлива, зажиганием, люком, зеркалами и даже рулевым управлением (BMW Active Steering). Сегодня почти любое устройство, которое потребляет энергию, построено на полупроводниках.

Микропроцессоры, без сомнения, находятся среди самых сложных полупроводниковых продуктов, поскольку в скором времени число транзисторов достигнет миллиарда, а спектр функциональности поражает уже сегодня. Скоро выйдут двуядерные процессоры Core 2 на почти готовом 45-нм техпроцессе Intel, причём содержать они будут уже 410 миллионов транзисторов (хотя их большая часть будет использоваться для 6-Мбайт кэша L2). 45-нм процесс назван так по размеру одного транзистора, который теперь примерно в 1 000 раз меньше диаметра человеческого волоса. В определённой степени именно поэтому электроника начинает управлять всем в нашей жизни: даже когда размеры транзистора были больше, производить не очень сложные микросхемы было очень дёшево, бюджет транзисторов был весьма большим.

В нашей статье мы рассмотрим основы производства микропроцессоров, но также коснёмся и истории процессоров, архитектуры и рассмотрим разные продукты на рынке. В Интернете можно найти немало интересной информации, кое-что перечислено ниже.

  • Wikipedia: Microprocessor . В этой статье рассмотрены разные типы процессоров и приведены ссылки на производителей и дополнительные страницы Wiki, посвящённые процессорам.
  • Wikipedia: Microprocessors (Category) . В разделе, посвящённом микропроцессорам, приведено ещё больше ссылок и информации.

Конкуренты в сфере ПК: AMD и Intel

Штаб-квартира компании Advanced Micro Devices Inc., основанной в 1969, располагается в калифорнийском Саннивейле, а "сердце" компании Intel, которая была образована всего на год раньше, располагается в нескольких километрах, в городе Санта-Клара. У AMD сегодня есть два завода: в Остине (Техас, США) и в Дрездене (Германия). Скоро в действие вступит новый завод. Кроме того, AMD объединила усилия с IBM по разработке процессорных технологий и по производству. Конечно, всё это - лишь доля от размера Intel, поскольку у этого лидера рынка сегодня работают почти 20 заводов в девяти местах. Примерно половина из них используется для производства микропроцессоров. Поэтому, когда вы сравниваете AMD и Intel, помните, что вы сравниваете Давида и Голиафа.

У Intel есть бесспорное преимущество в виде огромных производственных мощностей. Да, компания сегодня лидирует по внедрению передовых технологических процессов. Intel примерно на год опережает AMD в этом отношении. В результате Intel может использовать в своих процессорах большее число транзисторов и больший объём кэша. AMD, в отличие от Intel, приходится максимально эффективно оптимизировать техпроцесс, чтобы не отстать от конкурента и выпускать достойные процессоры. Конечно, дизайн процессоров и их архитектура сильно различаются, но технический процесс производства построен на тех же базовых принципах. Хотя, конечно, и в нём отличий много.

Производство микропроцессоров

Производство микропроцессоров состоит из двух важных этапов. Первый заключается в производстве подложки, что AMD и Intel осуществляют на своих заводах. Сюда входит и придание подложке проводящих свойств. Второй этап - тест подложек, сборка и упаковка процессора. Последнюю операцию обычно производят в менее дорогих странах. Если вы посмотрите на процессоры Intel, то найдёте надпись, что упаковка была осуществлена в Коста-Рике, Малайзии, на Филиппинах и т.д.

AMD и Intel сегодня пытаются выпускать продукты для максимального числа сегментов рынка, причём, на основе минимально возможного ассортимента кристаллов. Прекрасный пример - линейка процессоров Intel Core 2 Duo. Здесь есть три процессора с кодовыми названиями для разных рынков: Merom для мобильных приложений, Conroe - настольная версия, Woodcrest - серверная версия. Все три процессора построены на одной технологической основе, что позволяет производителю принимать решения на последних этапах производства. Можно включать или отключать функции, а текущий уровень тактовых частот даёт Intel прекрасный процент выхода годных кристаллов. Если на рынке повысился спрос на мобильные процессоры, Intel может сфокусироваться на выпуске моделей Socket 479. Если возрос спрос на настольные модели, то компания будет тестировать, валидировать и упаковывать кристаллы для Socket 775, в то время как серверные процессоры упаковываются под Socket 771. Так создаются даже четырёхядерные процессоры: два двуядерных кристалла устанавливаются в одну упаковку, вот мы и получаем четыре ядра.

Как создаются чипы

Производство чипов заключается в наложении тонких слоёв со сложным "узором" на кремниевые подложки. Сначала создаётся изолирующий слой, который работает как электрический затвор. Сверху затем накладывается фоторезистивный материал, а нежелательные участки удаляются с помощью масок и высокоинтенсивного облучения. Когда облучённые участки будут удалены, под ними откроются участки диоксида кремния, который удаляется с помощью травления. После этого удаляется и фоторезистивный материал, и мы получаем определённую структуру на поверхности кремния. Затем проводятся дополнительные процессы фотолитографии, с разными материалами, пока не будет получена желаемая трёхмерная структура. Каждый слой можно легировать определённым веществом или ионами, меняя электрические свойства. В каждом слое создаются окна, чтобы затем подводить металлические соединения.

Что касается производства подложек, то из цельного монокристалла-цилиндра их необходимо нарезать тонкими "блинами", чтобы потом легко разрезать на отдельные кристаллы процессоров. На каждом шаге производства выполняется сложное тестирование, позволяющее оценить качество. Для тестов каждого кристалла на подложке используются электрические зонды. Наконец, подложка разрезается на отдельные ядра, нерабочие ядра сразу же отсеиваются. В зависимости от характеристик, ядро становится тем или иным процессором и заключается в упаковку, которая облегчает установку процессора на материнскую плату. Все функциональные блоки проходят через интенсивные стресс-тесты.

Всё начинается с подложек

Первый шаг в производстве процессоров выполняется в чистой комнате. Кстати, важно отметить, что подобное технологичное производство представляет собой скопление огромного капитала на квадратный метр. На постройку современного завода со всем оборудованием легко "улетают" 2-3 млрд. долларов, да и на тестовые прогоны новых технологий требуется несколько месяцев. Только затем завод может серийно выпускать процессоры.

В общем, процесс производства чипов состоит из нескольких шагов обработки подложек. Сюда входит и создание самих подложек, которые в итоге будут разрезаны на отдельные кристаллы.

Всё начинается с выращивания монокристалла, для чего затравочный кристалл внедряется в ванну с расплавленным кремнием, который находится чуть выше точки плавления поликристаллического кремния. Важно, чтобы кристаллы росли медленно (примерно день), чтобы гарантировать правильное расположение атомов. Поликристаллический или аморфный кремний состоит из множества разномастных кристаллов, которые приведут к появлению нежелательных поверхностных структур с плохими электрическими свойствами. Когда кремний будет расплавлен, его можно легировать с помощью других веществ, меняющих его электрические свойства. Весь процесс происходит в герметичном помещении со специальным воздушным составом, чтобы кремний не окислялся.

Монокристалл разрезается на "блины" с помощью кольцевой алмазной пилы, которая очень точная и не создаёт крупных неровностей на поверхности подложек. Конечно, при этом поверхность подложек всё равно не идеально плоская, поэтому нужны дополнительные операции.

Сначала с помощью вращающихся стальных пластин и абразивного материала (такого, как оксид алюминия), снимается толстый слой с подложек (процесс называется притиркой). В результате устраняются неровности размером от 0,05 мм до, примерно, 0,002 мм (2 000 нм). Затем следует закруглить края каждой подложки, поскольку при острых кромках могут отслаиваться слои. Далее используется процесс травления, когда с помощью разных химикатов (плавиковая кислота, уксусная кислота, азотная кислота) поверхность сглаживается ещё примерно на 50 мкм. Физически поверхность не ухудшается, поскольку весь процесс полностью химический. Он позволяет удалить оставшиеся погрешности в структуре кристалла, в результате чего поверхность будет близка к идеалу.

Последний шаг - полировка, которая сглаживает поверхность до неровностей, максимум, 3 нм. Полировка осуществляется с помощью смеси гидроксида натрия и гранулированного диоксида кремния.

Сегодня подложки для микропроцессоров имеют диаметр 200 или 300 мм, что позволяет производителям чипов получать с каждой из них множество процессоров. Следующим шагом будут 450-мм подложки, но раньше 2013 года ожидать их не следует. В целом, чем больше диаметр подложки, тем больше можно произвести чипов одинакового размера. 300-мм подложка, например, даёт более чем в два раза больше процессоров, чем 200-мм.

Мы уже упоминали легирование, которое выполняется во время роста монокристалла. Но легирование производится и с готовой подложкой, и во время процессов фотолитографии позднее. Это позволяет менять электрические свойства определённых областей и слоёв, а не всей структуры кристалла

Добавление легирующего вещества может происходить через диффузию. Атомы легирующего вещества заполняют свободное пространство внутри кристаллической решётки, между структурами кремния. В некоторых случаях можно легировать и существующую структуру. Диффузия осуществляется с помощью газов (азот и аргон) или с помощью твёрдых веществ или других источников легирующего вещества.

Ещё один подход к легированию заключается в ионной имплантации, которая очень полезна в деле изменения свойств подложки, которая была легирована, поскольку ионная имплантация осуществляется при обычной температуре. Поэтому существующие примеси не диффундируют. На подложку можно наложить маску, которая позволяет обрабатывать только определённые области. Конечно, об ионной имплантации можно говорить долго и обсуждать глубину проникновения, активацию добавки при высокой температуре, канальные эффекты, проникновение в оксидные уровни и т.д., но это выходит за рамки нашей статьи. Процедуру можно повторять несколько раз во время производства.

Чтобы создать участки интегральной схемы, используется процесс фотолитографии. Поскольку при этом нужно облучать не всю поверхность подложки, то важно использовать так называемые маски, которые пропускают излучение высокой интенсивности только на определённые участки. Маски можно сравнить с чёрно-белым негативом. Интегральные схемы имеют множество слоёв (20 и больше), и для каждого из них требуется своя маска.

Структура из тонкой хромовой плёнки наносится на поверхность пластины из кварцевого стекла, чтобы создать шаблон. При этом дорогие инструменты, использующие поток электронов или лазер, прописывают необходимые данные интегральной схемы, в результате чего мы получаем шаблон из хрома на поверхности кварцевой подложки. Важно понимать, что каждая модификация интегральной схемы приводит к необходимости производства новых масок, поэтому весь процесс внесения правок очень затратный. Для очень сложных схем маски создаются весьма долго.

С помощью фотолитографии на кремниевой подложке формируется структура. Процесс повторяется несколько раз, пока не будет создано множество слоёв (более 20). Слои могут состоять из разных материалов, причём, нужно ещё и продумывать соединения микроскопическими проволочками. Все слои можно легировать.

Перед тем, как начнётся процесс фотолитографии, подложка очищается и нагревается, чтобы удалить липкие частицы и воду. Затем подложка с помощью специального устройства покрывается диоксидом кремния. Далее на подложку наносится связывающий агент, который гарантирует, что фоторезистивный материал, который будет нанесён на следующем шаге, останется на подложке. Фоторезистивный материал наносится на середину подложки, которая потом начинает вращаться с большой скоростью, чтобы слой равномерно распределился по всей поверхности подложки. Подложка вновь затем нагревается.

Затем через маску обложка облучается квантовым лазером, жёстким ультрафиолетовым излучением, рентгеновским излучением, пучками электронов или ионов - могут использоваться все эти источники света или энергии. Пучки электронов применяются, главным образом, для создания масок, рентгеновские лучи и пучки ионов - для исследовательских целей, а в промышленном производстве сегодня доминируют жёсткое УФ-излучение и газовые лазеры.


Жёсткое УФ-излучение с длиной волны 13,5 нм облучает фоторезистивный материал, проходя через маску.

Для получения требуемого результата очень важны время проецирования и фокусировка. Плохая фокусировка приведёт к тому, что останутся лишние частицы фоторезистивного материала, поскольку некоторые отверстия в маске не будут облучены должным образом. То же самое получится, если время проецирования будет слишком маленьким. Тогда структура из фоторезистивного материала будет слишком широкой, участки под отверстиями будут недодержанными. С другой стороны, чрезмерное время проецирования создаёт слишком большие участки под отверстиями и слишком узкую структуру из фоторезистивного материала. Как правило, очень трудоёмко и сложно отрегулировать и оптимизировать процесс. Неудачная регулировка приведёт к серьёзным отклонениям и в соединительных проводниках.

Специальная шаговая проекционная установка перемещает подложку в нужное положение. Затем может проецироваться строчка или один участок, чаще всего соответствующий одному кристаллу процессора. Дополнительные микроустановки могут вносить дополнительные изменения. Они могут отлаживать существующую технологию и оптимизировать техпроцесс. Микроустановки обычно работают над площадями меньше 1 кв. мм, в то время как обычные установки покрывают площади большего размера.

Затем подложка переходит на новый этап, где удаляется ослабленный фоторезистивный материал, что позволяет получить доступ к диоксиду кремния. Существуют мокрый и сухой процессы травления, которыми обрабатываются участки диоксида кремния. Мокрые процессы используют химические соединения, а сухие процессы - газ. Отдельный процесс заключается и в удалении остатков фоторезистивного материала. Производители часто сочетают мокрое и сухое удаление, чтобы фоторезистивный материал был полностью удалён. Это важно, поскольку фоторезистивный материал органический, и если его не удалить, он может привести к появлению дефектов на подложке. После травления и очистки можно приступать к осмотру подложки, что обычно и происходит на каждом важном этапе, или переводить подложку на новый цикл фотолитографии.

Тест подложек, сборка, упаковка

Готовые подложки тестируются на так называемых установках зондового контроля. Они работают со всей подложкой. На контакты каждого кристалла накладываются контакты зонда, что позволяет проводить электрические тесты. С помощью программного обеспечения тестируются все функции каждого ядра.

С помощью разрезания из подложки можно получить отдельные ядра. На данный момент установки зондового контроля уже выявили, какие кристаллы содержат ошибки, поэтому после разрезания их можно отделить от годных. Раньше повреждённые кристаллы физически маркировались, теперь в этом нет необходимости, вся информация хранится в единой базе данных.

Крепление кристалла

Затем функциональное ядро нужно связать с процессорной упаковкой, используя клейкий материал.

Затем нужно провести проводные соединения, связывающие контакты или ножки упаковки и сам кристалл. Могут использоваться золотые, алюминиевые или медные соединения.


Большинство современных процессоров используют пластиковую упаковку с распределителем тепла.

Обычно ядро заключается в керамическую или пластиковую упаковку, что позволяет предотвратить повреждение. Современные процессоры оснащаются так называемым распределителем тепла, который обеспечивает дополнительную защиту кристалла, а также большую контактную поверхность с кулером.

Тестирование процессора

Последний этап подразумевает тестирование процессора, что происходит при повышенных температурах, в соответствии со спецификациями процессора. Процессор автоматически устанавливается в тестовый сокет, после чего происходит анализ всех необходимых функций.